The use of Bayesian forecasting to make process adjustments during transitions
نویسندگان
چکیده
In many manufacturing operations, a system may exhibit dynamic behavior before reaching a steady-state level. This is most frequently associated with a transition in production like a product style change or a grade change. During the transition phase, the output does not respond instantaneously to a change in input. However, there is typically some information about the past transition phase performance available. We develop an adjustment policy for transition periods based on using a Bayesian forecast to incorporate the prior information. We present computational results showing average process improvements under various system and noise disturbance conditions. @ 2001 Elsevier Science B. V. All rights reserved. Forecasting; Process control; Bayesian statistics; Time series
منابع مشابه
Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کاملComparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil
In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...
متن کاملForecasting Stock Trend by Data Mining Algorithm
Stock trend forecasting is a one of the main factors in choosing the best investment, hence prediction and comparison of different firms’ stock trend is one method for improving investment process. Stockholders need information for forecasting firm’s stock trend in order to make decision about firms’ stock trading. In this study stock trend, forecasting performs by data mining algorithm. It sho...
متن کاملInnovation in the Agro-Food Sector: from Technical Innovation-Centred Approaches to Sustainability Transition Processes
Innovation is a complex phenomenon and process involving translation of knowledge into new techniques, products, services. It is considered crucial for sustainable agriculture development and achievement of long-term food security. The review describes the diversity of innovation and relates it to agro-food sector. It also sheds light on different innovation models and explores their contributi...
متن کاملForecasting Gold Price Changes: Application of an Equipped Artificial Neural Network
The forecast of fluctuations and prices is the major concern in financial markets. Thus, developing an accurate and robust forecasting decision model is critically favorable to the investors. As gold has shown a special capability to smooth inflation fluctuations, governors use gold as a price controlling lever. Thus, more information about future gold price trends will help to make the firm de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 130 شماره
صفحات -
تاریخ انتشار 2001